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Abstract. The spontaneous symmetry breaking in the Ising model can be equivalently described
in terms of percolation of Wolff clusters. In O(n) spin models similar clusters can be built in
a general way, and they are currently used to update these systems in Monte Carlo simulations.
We show that for three-dimensional O(2), O(3) and O(4) such clusters are indeed the physical
‘islands’ of the systems, i.e. they percolate at the physical threshold and the percolation exponents
are in the universality class of the corresponding model. For O(2) and O(3) the result is proven
analytically, for O(4) we derived it by numerical simulations.

1. Introduction

The possibility to interpret the critical behaviour of dynamical systems in terms of percolation
of geometrical structures of the system has always had a great appeal in the study of critical
phenomena [1, 2]. Attempts in this direction had already begun by the 1970s, when the
behaviour of clusters of nearest-neighbour like-signed spins started to be studied using the
Ising model. It turned out that in two dimensions these elementary site percolation clusters
do indeed undergo a geometrical transition exactly at the critical threshold of the Ising model
[3]. This result, which is not valid in three dimensions [4], is not so appealing because the
critical exponents derived by the percolation variables do not coincide with the Ising ones [5].
The correspondence between the geometrical and the thermal phenomenon is therefore only
partial.

The problem was solved by Coniglio and Klein [2], making use of a different definition
for the clusters. Such a definition had already been used by Fortuin and Kasteleyn to show
that the partition function of the Ising model can be rewritten in purely geometrical terms
as a sum over cluster configurations [6]. According to the Fortuin–Kasteleyn prescription,
two nearest-neighbour spins of the same sign belong to the same cluster with probability
p = 1 − exp(−2β) (β = J/kT , where J is the Ising coupling). Coniglio and Klein [2]
showed that the geometrical transition of these clusters leads to the required critical indices of
the Ising model (threshold and exponents).

The clusters of the Monte Carlo cluster update introduced by Wolff [7] for O(n) spin
models coincide with the Fortuin–Kasteleyn ones when n = 1 (which is just the Ising model).
The O(n) models without an external field in three space dimensions (n � 2) undergo a
phase transition due to the spontaneous breaking of the continuous rotational symmetry of
their Hamiltonian. Such models are very interesting: some physical systems in condensed
matter physics are directly associated with them. The three-dimensional O(3) model is the
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low-temperature effective model for a bidimensional quantum antiferromagnet [8]. The O(2)
model in three dimensions is known to be in the same universality class as superfluid 4He. O(n)

models are also very useful for studying relativistic field theories. The O(4) model in three
dimensions has been conjectured to be in the same universality class as the finite-temperature
chiral phase transition of quantum chromodynamics with two flavours of massless quarks [9].

The general definition of Wolff clusters for O(n) spin models inspired this work. Can
one describe the critical behaviour of O(n) without a field in three dimensions in terms of the
percolation of these clusters, as in the n = 1 case? We will show that this is indeed true at least
forO(2), O(3) andO(4). The fact that the Wolff clusters percolate at the physical critical point
was recently proven analytically for O(2) and O(3) [10, 11]. Although nothing concerning
the exponents was mentioned, we will show that starting from some relations established in
[10, 11] it is also possible to deduce the equality of the critical exponents for O(2) and O(3).
We have also performed computer simulations on O(2) and O(4) in order to illustrate this
result for O(2), and to prove it numerically for O(4).

2. O(n) models and Wolff clusters

The O(n) spin models with no external magnetic field have the following Hamiltonian:

H = −J
∑
〈i,j〉

sisj (2.1)

where i and j are nearest-neighbour sites on a d-dimensional hypercubic lattice, and si is an
n-component unit vector at site i (J is the coupling). The partition function of these models
at temperature T is

Z(T ) =
∫

D[s] exp

{
β

∑
〈i,j〉

sisj

}
(2.2)

where β = J/kT and the integral is extended over all spin configurations {s} of the system.
In three dimensions the O(n) models undergo a second-order phase transition. The order
parameter of this transition is the normalized magnetization M = 1

V

∑
i si (where V is the

lattice volume).
Numerical simulations of O(n) models became much quicker and more effective after

Wolff [7] introduced a Monte Carlo algorithm based on simultaneous updates of large clusters
of spins, generalizing the Swendsen–Wang algorithm [12] to the continuous-spin case. This
algorithm has the remarkable advantage that it eliminates the problem of critical slowing down,
an effect that makes simulations around criticality very lengthy with traditional local methods
(Metropolis, heat bath). The Wolff algorithm can be basically divided into two phases:

1. a cluster of spins is selected;
2. the spins of this cluster are ‘flipped’, i.e. they are reflected with respect to some defined

hyperplane.

For details of the flipping procedure see [7]. Here we are interested in the way to build up
the clusters. We can split this procedure into two steps:

(a) choose a random n-component unit vector r;
(b) bind together pairs of nearest-neighbour sites i, j with probability

p(i, j) = 1 − exp
{
min[0,−2β(si · r)(sj · r)]

}
. (2.3)
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From this prescription it follows that if the two spins at two nearest-neighbour sites i and j such
that their projections onto the random vector r are of opposite signs, they will never belong to
the same cluster (p(i, j) = 0). The random vector r, therefore, divides the spin space into two
hemispheres, separating the spins which have a positive projection onto it from those which
have a negative projection. The Wolff clusters are made out of spins which all lie either in one
or the other hemisphere. In this respect, we can again speak of ‘up’ and ‘down’ spins, as for
the Ising model. In addition to that, the bond probability is local, since it depends explicitly
on the spin vectors si and sj , and not only on the temperature as for the Fortuin–Kasteleyn
factor.

The analogies with the Ising model are however clear, motivating the attempt to study the
percolation properties of these clusters.

3. Percolation exponents for O(2) and O(3)

In [10, 11, 13] the random-cluster representations of O(n) models, n = 2, 3 have been derived
(and exploited) through the Fortuin–Kasteleyn transformation [6] of the Hamiltonians and
similar results were obtained in [14] for the continuous (or classical) spin model [15]. Wolff
random cluster probability distributions [7] for these models have been studied and several
monotonicity properties of these distributions (FKG properties) [16] have been established,
leading to the proof of the equivalence between the onset of magnetic ordering in the O(n)

models (n = 2, 3) and percolation in the corresponding random Wolff cluster models. From the
results stated above follows in a natural way the equality of the critical thermal and geometrical
exponents.

In what follows we focus our attention on two variables.

• The percolation strengthP , defined as the probability that a lattice site picked up at random
belongs to the percolating cluster. P is the order parameter of the percolation transition.

• The average cluster size S, defined as

S =
∑

s nss
2∑

s nss
.

Here, ns is the number of clusters of size s per lattice site (i.e. divided by the lattice
volume) and the sums exclude the percolating cluster (see [17]).

We stress that in some cases one speaks of average cluster size referring to the average
size of all clusters, including the percolating one. This definition makes the variable infinite
above the percolation threshold. Below the threshold the two definitions obviously coincide
and therefore they share the same critical exponent.

In [10, 11, 13, 14], it was proved that if P(T ) is the percolation strength in the random
Wolff cluster representation and m(T ) is the magnetization in the O(n) spin system, then there
exists a function c(T ) ∈ C∞(R

+) such that

P(T ) � m(T ) � c(T ) P (T ). (3.1)

Similarly, denoting byS(T ) the average size of the Wolff clusters andχ(T ) the (linear response)
susceptibility, it was also proved that

S(T ) � χ(T ) � c(T )2S(T ) (3.2)

where c(T ) is the same C∞(R) function as in (3.1).
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From scaling theory (see [18]), near criticality, the susceptibility is believed to behave
according to the following law:

χ(T ) ∼
T→T +

c

(T − Tc)
−γ (3.3)

and the average mean cluster size of Wolff clusters should follow the law

S(T ) ∼
T→T +

c

|p(T ) − p(Tc)|−γ ′
(3.4)

where p(T ) is the bond occupation probability in the Wolff random cluster model (i.e. the
Coniglio–Klein [2] bond probability) given by p(T ) ∼ 1 − exp(−a/T ), where a does not
depend on T .

From [10, 11, 13, 14] the equality of the critical exponentsγ andγ ′ follows readily. Indeed,
because of monotonicity, taking the logarithm in (3.3) and (3.4), and using (3.2) one finds

−γ ′ log |p(T ) − p(Tc)| � −γ log(T − Tc) � 2 log c(T ) − γ ′ log |p(T ) − p(Tc)| (3.5)

which reduces to

γ ′ � γ
log(T − Tc)

log |p(T ) − p(Tc)| � γ ′ − 2 log c(T )

log |p(T ) − p(Tc)| . (3.6)

Now when T → T +
c and since c(T ) ∈ C∞(R), the last term vanishes and it is easy to see that

log(T − Tc)/ log |p(T ) − p(Tc)| →T→T +
c

1. When T → T +
c we get the result γ = γ ′.

Using (3.1) and the scaling behaviours of the magnetization and the percolation strength
in terms of their critical exponents β and β ′, respectively, one can show (following the same
lines as before) that β = β ′ when T → T +

c ≡ p(T ) → p(Tc)
+, where p(T ) is again the

Coniglio–Klein bond probability already defined above.
Namely, the percolation strength is believed to behave [18] as a function of the elementary

bond occupation probability p according to the following law:

P(p) ∼
p→p+

c

(p − pc)
β ′

p ≡ p(T ) (3.7)

whereas, the magnetization should behave as

m(T ) ∼
T→T −

c

(Tc − T )β (3.8)

then using the same procedure as below, we are led to the following expression:

β ′ � β
log(Tc − T )

log(p(T ) − p(Tc))
� β ′ − log c(T )

log(p(T ) − p(Tc))
(3.9)

which, using

log(Tc − T )/ log(p(T ) − p(Tc)) →
T→T −

c

1

and

log c(T )/ log(p(T ) − p(Tc)) →
T→T −

c

0

gives

β = β ′.

as claimed.
Concerning eventual extensions of analytical results to other spin models, we mention that

the equivalence of the thermal and the geometrical phase transitions is true for Z(3) and Z(4)
models as a consequence of the equivalences already established for the continuous spin Ising
model and O(2) [10, 14]. As for O(n) models with n > 3, we note that the proof for O(3)
was derived starting from the result for O(2). However, some additional conditions remain to
be proved in order to be able to extend the result from O(n − 1) to O(n) if n > 3.
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4. Numerical results

We have investigated numerically the three-dimensional O(2) and O(4) models by performing
computer simulations for several lattice sizes. The Monte Carlo update was performed using
the Wolff algorithm, described in section 2. At the end of an iteration, the percolation strength
P and the average cluster size S were measured. This has been done for each of the models
using two different approaches.

The first approach is the traditional one, based on a complete analysis of the lattice
configuration. Once we have the configuration we want to analyse, we build Wolff clusters
until all spins are set into clusters. We assign to P the value zero if there is no percolating
cluster, the ratio between the size of the percolating cluster and the lattice volume otherwise.
We calculate S using the standard formula (3.1). The operational definition of a percolating
cluster was taken as follows. We say that a cluster percolates if it spans the lattice from a
face to the opposite one in each of the three directions x, y, z. We made this choice to reduce
the possibility that, due to the finite size of the lattices, one could find more than a spanning
cluster, making the definition of our variables ambiguous†.

In this approach we have used free boundary conditions.
The second approach is based on a single-cluster analysis. Basically, one studies the

percolation properties of the cluster built during the update procedure. For the cluster building
we have considered periodic boundary conditions. Suppose that sc is the size of the cluster
we built. If it percolates, we assign a value of one to the strength P and zero to the size S;
otherwise, we write zero for P and sc for S. These definitions of P and S look different from
the standard definitions we have introduced above, but it is easy to see that they are equivalent
to them.

In fact, we built the cluster starting from a lattice site taken at random. In this way, the
probability that the cluster percolates (expressed by the new P ) coincides with the probability
that a site taken at random belongs to the percolating cluster (the standard definition of P ). As
far as the average cluster size is concerned, we can repeat the same reasoning: the probability
that the cluster we built is a non-percolating cluster of size sc is just the probability wsc that a
randomly selected lattice site belongs to a non-percolating cluster of size sc; wsc is given by

wsc = nsc sc. (4.1)

Because of that, whenever we find a non-vanishing size sc, such a value will be weighted by
the probability wsc in the final average S, which is then given by the following formula:

S =
∑
sc

wsc sc =
∑
sc

nsc s
2
c (4.2)

where the sum runs over the non-percolating clusters. We note that equation (4.2) coincides
with equation (3.1), apart from the denominator

∑
s ns s, which is just the density of the sites

belonging to finite clusters. Since this term does not contribute to the divergence of the average
cluster size, the power-law behaviour of the two S’s at criticality is identical, so that the critical
exponent γ is the same in both cases.

As we have said, in the second approach we select a single cluster at a time from the
whole configuration. Because of that we now have some freedom in choosing the definition
of the percolating cluster, as we do not risk, like in the first approach, finding more spanning

† In three dimensions even this definition of a spanning cluster does not exclude the possibility of having more than
one of such cluster for the same configuration. Nevertheless, the occurrence of such cases is so rare that we can safely
ignore them.
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Figure 1. Percolation cumulant as a function of β for O(2) and five lattice sizes. The broken line
indicates the position of the thermal threshold [20].

structures. We say that the cluster percolates if it connects at least one face with the opposite
one.

In this way, the definitions of percolating clusters are also different in the two approaches.
This certainly influences the results on finite lattices, but has no effect on the infinite-volume
properties we are interested in. In fact, it is known that one can have at most a unique spanning
cluster above the critical density pc (in our case below the critical temperature Tc). Exactly at
pc (Tc) there is a finite probability of having more than one spanning cluster [19]. So, the two
different definitions of a percolating cluster we have adopted can lead to differences between
the infinite-volume values only at the critical point pc (Tc). However, the critical exponents are,
of course, not influenced by that, as they are determined by the behaviour of the percolation
variables near the critical point, not exactly at pc (Tc).

The second approach has the advantage that it does not require a procedure to reduce the
configuration of the system to a set of clusters; on the other hand, since it gets information
from a single cluster, it requires a higher number of samples in order to measure the percolation
variables with the same accuracy as the first method. Nevertheless, the iterations are faster due
to the simpler measurement of observables, and are less correlated than in the first approach,
since only a (random) limited region of the lattice is considered in each sample. We find that
both methods are efficient, and that it is important to be able to compare results obtained in
two such different ways.

For our numerical investigations we have also made use of another variable which can be
extracted from the percolation strength P . On a finite lattice there is at any temperature β a
well defined probability of having a spanning cluster. We call it the percolation cumulant and
denote it by γr . When the size of the lattice goes to infinity, γr as a function of β approaches
a step function: it is always zero below βc and always one above it. To obtain the finite-size
curves out of our measurements we must basically see how often we find a percolating cluster
(P �= 0) for a definite lattice size and a temperature β.

To evaluate the thresholds and the exponents we have adopted finite-size-scaling
techniques. We consider the general finite-size-scaling prediction for an observable O,

O(t, L) = Lρ/ν QO(L1/ν t) (4.3)

where t = T − Tc, L is the linear dimension of the lattice, QO is a universal function and
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Figure 2. Percolation cumulant as a function of β for O(4) and six lattice sizes. The broken line
indicates the position of the thermal threshold [21].

Figure 3. Rescaled percolation cumulant for O(2) using βc = 0.454 16 and the O(2) exponent
ν = 0.672.

the exponent ρ is related to the critical behaviour of O at infinite volume. Following the
definitions given in section 3, we have ρ = γ ′ for the observable S and ρ = −β ′ for P . For
the percolation cumulant γr we have ρ = 0 [18], which means that γr curves corresponding
to different lattice sizes cross at the critical point: for t = 0 and ρ = 0, in fact, the observable
of equation (4.3) is not L dependent.

Figures 1 and 2 show γr curves for O(2) and O(4), respectively. The agreement with
the physical thresholds (broken lines) is clear. Moreover, we can already find indications
concerning the class of critical exponents of our clusters. In fact, if one knows the critical
point and the exponent ν, a rescaling of γr as a function of (T − Tc)L

1/ν should give us the
same function for each lattice size (see equation (4.3)). Figures 3 and 4 show the rescaled
percolation cumulant curves for O(2), using βc = 0.454 16 and two different values of the
exponent ν: the O(2) value and the random percolation one, respectively.
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Figure 4. Rescaled percolation cumulant for O(2) using βc = 0.454 16 and the three-dimensional
random percolation exponent ν = 0.88.

Figure 5. Rescaled percolation cumulant for O(4) using βc = 0.9359 and the O(4) exponent
ν = 0.742.

The scaling we get in correspondence to the O(2) value is remarkable. In figures 5 and 6
we repeat the same analysis for O(4) (βc = 0.9359); here it is also clear that the percolation
exponent ν is in agreement with the O(4) value. (We have considered values for the O(2) and
O(4) models from [20] and [21, 22], respectively.)

To determine more precisely the critical point we have used the scaling relation (4.3) for
variables S and P . By plotting O as a function of L at the critical temperature, we can obtain
the exponent ratio ρ/ν directly from the slope of the data points on a log–log plot.

We concentrated on the critical regions that we localized through the percolation cumulant
and performed more simulations for several β values looking for βs for which we get the best
χ2 for the linear fit of the data points on a log–log plot. The results for O(2) and O(4) are
given in tables 1 and 2, respectively.

The agreement with the physical values in [20–22] is good. So far we have presented the
results obtained using the first approach. The results derived using the second approach are
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Figure 6. Rescaled percolation cumulant for O(4) using βc = 0.9359 and the three-dimensional
random percolation exponent ν = 0.88.

Table 1. Comparison of the thermal and percolation thresholds and exponents for O(2).

βc β/ν γ /ν

Percolation results 0.454 18(2) 0.516(5) 1.971(15)
Thermal results [20] 0.454 165(4) 0.5189(3) 1.9619(5)

Table 2. Comparison of the thermal and percolation thresholds and exponents for O(4).

βc β/ν γ /ν

Percolation results 0.935 95(3) 0.515(5) 1.961(15)
Thermal results 0.935 90(5) [21] 0.5129(11) [22] 1.9746(38) [22]

essentially the same; besides, we observe an improved quality of the scaling, mainly because of
the use of periodic boundary conditions, which considerably reduce the finite-size effects. In
particular, in figures 7 and 8 we show the scaling of S and P at the thermal thresholds reported
in [20, 21]. We observe very small finite-size effects (lattices of L � 20 are used in the fits),
especially for the O(2) case, which is in contrast to what is observed for thermal observables
[23]. The slopes of the straight lines are in agreement with the values of the thermal exponent
ratios β/ν, γ /ν.

We thus confirm numerically the equivalence found in section 3 for the O(2) case, and
verify that it also holds in the O(4) case.

5. Conclusions

In this work we have shown that the spontaneous breaking of the continuous rotational
symmetry for the three-dimensional O(2), O(3) and O(4) spin models can be described
as percolation of Wolff clusters. For O(2) and O(3) the result was proven analytically, for
O(4) it was derived by means of lattice Monte Carlo simulations. In all cases, the number n
of components of the spin vectors s does not seem to play a role; the result is thus likely to be
valid for any O(n) model.
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Figure 7. Finite-size-scaling plot at Tc for the percolation observable P as a function of the lattice
size L. The slopes in the plots correspond to β ′/ν′ = 0.521(3), 0.513(6), respectively, for O(2)
and O(4). Error bars are one standard deviation.

Figure 8. Finite-size-scaling plot at Tc for the percolation observable S as a function of the lattice
size L. The slopes in the plots correspond to γ ′/ν′ = 1.97(1), 1.99(1), respectively, for O(2) and
O(4). The two curves look surprisingly similar to each other. Error bars are one standard deviation.
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